The deterministic annealing approach for discriminative continuous HMM design

نویسندگان

  • Cecile Gelin-Huet
  • Kenneth Rose
  • Ajit V. Rao
چکیده

We propose a deterministic annealing (DA) algorithm to design classifiers based on continuous observation hidden Markov models. The algorithm belongs to the class of minimum classification error (MCE) techniques that are known to outperform maximum likelihood (ML) design. Most MCE methods smooth the piecewise constant classification error cost to facilitate the use of local descent optimization methods, but are susceptible to the numerous shallow local minimum traps that riddle the cost surface. The DA approach employs randomization of the classification rule followed by minimization of the corresponding expected misclassification rate, while controlling the level of randomness via a constraint on the Shannon entropy. The effective cost function is smooth and converges to the MCE cost at the limit of zero entropy. The proposed algorithm significantly outperforms both standard ML and standard MCE design methods on the E-set database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative training of tied-mixture HMM by deterministic annealing

A deterministic annealing algorithm for the design of tiedmixture HMM recognizers is proposed, which reduces the training sensitivity to parameter initialization, automatically smoothes the classification error cost function to allow gradientbased optimization, and seeks better solutions than known techniques. The new approach introduces randomness into the classification rule during the traini...

متن کامل

Deterministically annealed design of hidden Markov model speech recognizers

Many conventional speech recognition systems are based on the use of hidden Markov models (HMM) within the context of discriminant-based pattern classification. While the speech recognition objective is a low rate of misclassification, HMM design has been traditionally approached via maximum likelihood (ML) modeling which is, in general, mismatched with the minimum error objective and hence sub...

متن کامل

Stochastic Annealing for Variational Inference

We empirically evaluate a stochastic annealing strategy for Bayesian posterior optimization with variational inference. Variational inference is a deterministic approach to approximate posterior inference in Bayesian models in which a typically non-convex objective function is locally optimized over the parameters of the approximating distribution. We investigate an annealing method for optimiz...

متن کامل

Dictionary-based discriminative HMM parameter estimation for continuous speech recognition systems

The estimation of the HMM parameters has always been a major issue in the design of speech recognition systems. Discriminative objectives like Maximum Mutual Information (MMI) or Minimum Classi cation Error (MCE) have proved to be superior over the common Maximum Likelihood Estimation (MLE) in cases where a robust estimation of the probabilistic density functions (pdfs) is not possible. The det...

متن کامل

Inverted HMM - a Proof of Concept

In this work, we propose an inverted hidden Markov model (HMM) approach to automatic speech and handwriting recognition that naturally incorporates discriminative, artificial neural network based label distributions. Instead of aligning each input frame to a state label as in the standard HMM derivation, we propose to inversely align each element of an HMM state label sequence to a single input...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999